IBM speeds deep learning by using multiple servers

For everyone frustrated by how long it takes to train deep learning models, IBM has some good news: It has unveiled a way to automatically split deep-learning training jobs across multiple physical servers — not just individual GPUs, but whole systems with their own separate sets of GPUs.

Now the bad news: It’s available only in IBM’s PowerAI 4.0 software package, which runs exclusively on IBM’s own OpenPower hardware systems.

Distributed Deep Learning (DDL) doesn’t require developers to learn an entirely new deep learning framework. It repackages several common frameworks for machine learning: TensorFlow, Torch, Caffe, Chainer, and Theano. Deep learning projecs that use those frameworks can then run in parallel across multiple hardware nodes.

To read this article in full or to leave a comment, please click here

from InfoWorld Big Data http://ift.tt/2ulgzP4
via IFTTT

Advertisements