How to use Redis for real-time stream processing

Real-time streaming data ingest is a common requirement for many big data use cases. In fields like IoT, e-commerce, security, communications, entertainment, finance, and retail, where so much depends on timely and accurate data-driven decision making, real-time data collection and analysis are in fact core to the business.

However, collecting, storing and processing streaming data in large volumes and at high velocity presents architectural challenges. An important first step in delivering real-time data analysis is ensuring that adequate network, compute, storage, and memory resources are available to capture fast data streams. But a company’s software stack must match the performance of its physical infrastructure. Otherwise, businesses will face a massive backlog of data, or worse, missing or incomplete data.

To read this article in full or to leave a comment, please click here

from InfoWorld Big Data